Abstract

AbstractWind energy requires accurate forecasts for adequate integration into the electric grid system. In addition, global atmospheric models are not able to simulate local winds in complex terrain, where wind farms are sometimes placed. For this reason, the use of mesoscale models is vital for estimating wind speed at wind turbine hub height. In this regard, the Weather Research and Forecasting (WRF) Model allows a user to apply different initial and boundary conditions as well as physical parameterizations. In this research, a sensitivity analysis of several physical schemes and initial and boundary conditions was performed for the Alaiz mountain range in the northern Iberian Peninsula, where several wind farms are located. Model performance was evaluated under various atmospheric stabilities and wind speeds. For validation purposes, a mast with anemometers installed at 40, 78, 90, and 118 m above ground level was used. The results indicate that performance of the Global Forecast System analysis and European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) as initial and boundary conditions was similar, although each performed better under certain meteorological conditions. With regard to physical schemes, there is no single combination of parameterizations that performs best during all weather conditions. Nevertheless, some combinations have been identified as inefficient, and therefore their use is discouraged. As a result, the validation of an ensemble prediction system composed of the best 12 deterministic simulations shows the most accurate results, obtaining relative errors in wind speed forecasts that are <15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.