Abstract
The modeling and simulation of CO2 capture processes with amine solutions are considered as important developments toward the detailed study and analysis of these processes. In the literature, the application of rate-based models for the modeling of CO2 capture processes by amine solutions has been proved superior to equilibrium-stage models. The results of rate-based models, however, depend strongly on the selection of model parameters such as physical properties, transport properties, kinetic models, and mass transfer correlations. In this study, sensitivity analysis was performed to investigate the effect of mass transfer correlations in combination with kinetic models on the performance of an absorber column. The reason for this investigation is to establish appropriate correlations that can be used for design of the CO2 capture process. Sensitivity analysis was performed using a rate-based model for capture of CO2 in monoethanolamine (MEA), methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) solutions in packed columns containing structured and random packing. The model was successfully validated by comparison of obtained results with published experimental data. The sensitivity analysis revealed that the mass transfer correlations developed by Hanley and Chen (2012) to simulate a structured packing absorption column, obtained the best results in comparison with the other tested and analyzed correlations in this study. For a randomly packed column, the correlations suggested by Onda et al. (1968) exhibited the best results. The kinetic models tested and examined in this study had a determinant role in the results of the sensitivity analysis in a manner that reflected the assumptions used in development of the model such as the temperature and amine concentration ranges. Therefore, careful selection of the mass transfer correlations and kinetic models to be used in the rate-based absorber model is required for modeling of the CO2 capture process. Otherwise, serious errors in design of the CO2 capture process may result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.