Abstract

The Hungarian PMK-2 test facility is a scaled-down model of the VVER-440/213 type pressurized water reactors of Paks NPP, on which several measurement series have been carried out since the 80s. One of these series include four Standard Problem Exercises (SPE), primarily small-break loss-of coolant accident (SBLOCA) transients, performed in cooperation with IAEA. New RELAP5, TRACE and APROS models have already been developed and a comparative analysis of the results has been published recently for the PMK SPE-4 experiment. In that SBLOCA scenario, no high-pressure injection system (HPIS) was available, but a secondary side bleed and feed operation has been performed during the transient. This paper is a continuation of the previous one and presents the required model modifications and the analysis of the second SPE. The initiating event, similarly to the SPE-4 experiment, is a 7.4% break located at the top of the downcomer, while the main differences are that one line of the HPIS is available and no secondary side feed and bleed operation is performed in this case. One of the main objectives of the experiment was to verify that these safety measures are enough to prevent core dry-out. In addition to the investigation of this question, a sensitivity study was also carried out with respect to selected parameters that might have a significant impact on the characteristic of the simulated processes. The assessment of the results has also been performed with two quantitative methods, namely the Fast Fourier Transform Based Method with Signal Mirroring (FFTBM-SM) and Stochastic Approximation Ratio Based Method (SARBM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.