Abstract

Theincrease of greenhouse gases emissions makes necessary to improve the comprehension of the Internal Combustion Engines operation. One of the factors that affect the combustion in these engines is the turbulence, since it can raise the quality of the fuel-air mixture inside the combustion chamber. However, when modeling internal combustion engines using CFD, the turbulence model choice is always a relevant problem. The present paper analyzes the results for three different turbulence models (k-ε Realizable, RNG k-ε and Menter k-ω SST) ina single-cylinder engine geometry, comparing numerical and experimental pressure data. For this experiment, the k-ε models obtained more trustable results than the k-ω SST, using less computational resources. The models achieved good results for eddy recirculation inside de cylinder and in regions of free shear flow at the valve openings, which makes possible to observe the correlation between parameters such as tumble and turbulent kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call