Abstract
Inferences based on spatial analysis of areal data depend greatly on the method used to quantify the degree of proximity between spatial units - regions. These proximity measures are normally organized in the form of weights matrices, which are used to obtain statistics that take into account neighbourhood relations between agents. In any scientific field where the focus is on human behaviour, areal datasets are greatly relevant since this is the most common form of data collection (normally as count data). The method or schema used to divide a continuous spatial surface into sets of discrete units influences inferences about geographical and social phenomena, mainly because these units are neither homogeneous nor regular. This article tests the effect of different geometrical data aggregation schemas - administrative regions and hexagonal surface tessellation - on global spatial autocorrelation statistics. Two geographical variables are taken into account: scale (resolution) and form (regularity). This is achieved through the use of different aggregation levels and geometrical schemas. Five different datasets are used, all representing the distribution of resident population aggregated for two study areas, with the objective of consistently test the effect of different spatial aggregation schemas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Agricultural and Environmental Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.