Abstract

This paper applies the Lax-Friedrichs technique, usually used in fluid dynamics, to transmission line sensitivity analysis. The Lax-Friedrichs difference scheme for sensitivity analysis of both uniform and nonuniform transmission lines is derived. Based on this scheme, a method for analyzing multiconductor transmission line sensitivity, which does not need to be decoupled, is presented by combining with matrix operations. Using numerical experiments, the proposed method is compared with the characteristic method and the fast Fourier transform approach. With the presented method, the sensitivity of a nonlinear circuit including nonuniform multiconductor transmission lines is analyzed and the results are verified by the HSPICE perturbation method. The proposed method can be applied to either linear or nonlinear circuits, which include lossy nonuniform multiconductor transmission lines, and is proved to be efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.