Abstract

This study presents a reservoir simulation model to analyze the impact of reservoir and hydraulic fracture parameters on gas production from a shale gas reservoir. The model was constructed as a multiporosity system with matrix subgrids to account for transient gas flow from the matrix to the fractures. The extended Langmuir isotherm was applied to control the desorption process of multiple components during the production. Primary hydraulic fractures perpendicular to the horizontal wellbore were modeled explicitly with thin grid cells that preserved the conductivity. The hydraulically induced fracture network around the horizontal well was characterized by the matrix-fracture coupling factor and permeability of the fracture system. The linear experimental design technique of the Plackett-Burman type was used to screen influential parameters including porosity and permeability of the reservoir matrix and fractures, matrix-fracture factor, matrix subdivisions, primary hydraulic fracture half-length, height, spacing, and conductivity, rock compaction, non-Darcy flow coefficient, and gas content. A quadratic response surface model was constructed with three-level uncertainty parameters selected from the initial linear screening process. The model was verified by confirmation runs. Sensitivity studies provided important insights into the impact of reservoir and fracture parameters on shale gas production forecasts, which can be critical for fracture treatment design and production scheme optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.