Abstract

Abstract The combination of horizontal drilling and multiple hydraulic fracturing has been widely used to stimulate shale gas reservoirs for economical gas production. Numerical simulation is a useful tool to optimize fracture half-length and spacing in a multistage fracturing design. We developed a methodology to use a commercial reservoir simulator to simulate production performance of shale gas reservoirs after fracturing. We verified our simulation method with the available field data from the Barnett Shale. In this work, we performed a sensitivity study of gas production for a shale gas well with different geometries of multiple transverse hydraulic fractures, in which fractures' half-lengths vary. Hydraulic fractures are divided into two outer and inner fracture groups. The simulation results revealed that the outer fractures contribute more to gas production when fracture spacing is small due to the effect of fracture interference. Also, we studied the effects of fracture half-length and fracture spacing on gas production. This work can provide some insights into characterization of hydraulic fracture geometry on the basis of production data in shale gas reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.