Abstract
Abstract Understanding spatial development of a turbulent mixing layer is essential for many engineering applications. However, the flow development is difficult to replicate in physical or numerical experiments. For this reason, the most attractive method for the mixing layer analysis is the direct numerical simulation (DNS), with the most control over the simulation inputs and free from modeling assumptions. On the other hand, the DNS cost often prevents conducting the sensitivity analysis of the simulation results to variations in the numerical procedure and thus, separating numerical and physical effects. In this paper, effects of the computational domain dimensions on statistics collected from DNS of a spatially developing incompressible turbulent mixing layer are analyzed with the focus on determining the domain dimensions suitable for studying the flow asymptotic state. In the simulations, the mixing layer develops between two coflowing laminar boundary layers formed on two sides of a sharp-ended splitter plate of a finite thickness with characteristics close to those of the untripped boundary layers in the experiments by Bell and Mehta, AIAA J., 28(12), 2034 (1990). The simulations were conducted using the spectral-element code Nek5000.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Verification, Validation and Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.