Abstract

This paper studies the vibration of a suspended cable with small sag excited by a second excitation (normal) mode causing combination resonance in the three modes, i.e. tangent, normal and bi-normal modes. The displacement response spectra in the time domain and phase portraits are provided as evidence of the transition from the unstable steady-state motion to the stable one for nonlinear cable oscillation. A nondimensional equation for the cable tension is established with its variation evaluated for the unstable zone. The half-normalized sensitivity analysis of cable parameters, such as damping coefficient, excitation amplitude, arc length parameter and initial conditions, for their influence on cable tension is conducted in the time domain by a direct integration method. Also, the characteristics of the dynamic sensitivity of cable tension to the parameters are discussed. As a result, a sensitivity ranking chart is prepared based on the sensitivity analyses for the parameters considered. It is clearly revealed that cable tension is very sensitive to tangent and normal initial displacements in spite of their small values, whereas the same is not true for the arc length parameter and bi-normal damping coefficient. To verify the sensitivity analysis algorithm, a forced Rayleigh oscillator is introduced. A feasibility study using the oscillator shows that the numerical results obtained are in good qualitative agreement with the analytical predictions, implying that the associated algorithm works well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.