Abstract

Over years, the energy absorption process against different kinds of loading has always been one the most important issues in the engineering science. To address this, many kinds of dampers such as viscoelastic, friction, yielding, mass, and liquid dampers have been invented. Among all these dampers, steel yielding dampers are one of the most economic, available, suitable, and best choices for the long return period of seismic cyclic loading on structures. However, it seems that there are not sufficient studies on these dampers to convince the designers to use them widely. This research tries to show the effects of geometrical parameters on the energy absorption and cyclic behavior on a specific simple trapezoidal steel yielding damper using the finite element method, then the effect of using a new steel damper on base shear and roof acceleration responses of a three story building studied by nonlinear time history analysis. According to the results, there are some effective and less effective parameters whose variation such as geometrical parameters can seriously change the total energy absorption level and improve the damper hysteresis loops as well as ductility under specific cyclic loading and showed that using new steel damper will results the significant decreasing in base shear and roof acceleration of the building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call