Abstract

This paper is aimed at performing a group of experiments to evaluate the sensitivity to cumulus and microphysics schemes, as represented in numerical simulations of the Weather Research and Forecasting (WRF) model. The convective schemes of Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), Grell-Devenyi (GD), Grell-Freita (GF), Grell 3D (G3D), Tiedtke and New Tiedtke (NT) were tested in association with the microphysics schemes of Kessler, Purdue Lin, WSM3, WSM5, WSM6, ETA (Ferrier) and Goddard (totaling forty-nine experiments) in order to identify the combination which best represents the cumulative rainfall distribution in the Paraíba do Sul watershed. In order to evaluate the best performance experiments, they were submitted to statistical tests of bias (BIAS), root mean square error (RMSE), absolute mean error (MAE) and Coefficient of Determination (R2). Results show that combinations WSM5 and GD; Goddard and G3D; Perdue Lin and G3D; WSM5 and G3D form a group of four physical configurations statistically similar and able to predict well the mean rainfall in the Paraiba do Sul watershed. It was noticed also that the cumulus scheme has a greater weight than microphysics in rainfall simulations being GD3 the best performing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call