Abstract
Just-suspension speed (Njs) is an important parameter for stirred tank design using a solid-liquid mixing system in the chemical process industry. However, current correlations for Njs suffer from uncertainty from limited experimental databases and limitations due to many parameters that play an important role in Njs determination. A comprehensive computation of the radial basis function neural network (RBFNN) was developed based on solid-liquid mixing experiments, which contain 935 datasets for the prediction of Njs. The Njs values were obtained experimentally using Zwietering correlation with different solid loading percentages, solid particle density, solid particle diameter, mixing solvent density, number of impeller blades, impeller diameter, impeller blade hub angle, impeller blade tip angle, the width of the impeller blade and the ratio of the clearance between the impeller and the bottom of the tank with the tank diameter. The RBFNN proved to have a much better ability to accurately predict the desired Njs compared to MLPNN even after decreasing the number of input variables from 11 to 8. Thus, the computational RBFNN model results will be useful for extending the application of a solid-liquid mixing system for estimating the just-suspension speed for stirred tank design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.