Abstract
Structural damage detection using time domain vibration responses has advantages such as simplicity in calculation and no requirement of a finite element model, which attracts more and more researchers in recent years. In present paper, a new approach to detect the damage based on the auto correlation function is proposed. The maximum values of the auto correlation function of the vibration response signals from different measurement points are formulated as a vector called Auto Correlation Function at Maximum Point Value Vector, AMV for short. The relative change of the normalized AMV before and after damage is used as the damage index to locate the damage. Sensitivity analysis of the normalized AMV with respect to the local stiffness shows that the normalized AMV has a sharp change around the local stiffness change location, which means the normalized AMV is a good indicator to detect the damage even when the damage is very small. Stiffness reduction detection of a 12-story frame structure is provided to illustrate the validity, effectiveness and the anti-noise ability of the proposed method. Comparison of the normalized AMV and the other correlation-function-based damage detection method shows the normalized AMV has a better detectability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.