Abstract

Background: Less-invasive percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) gained importance as a possible nonpharmacological treatment for various diseases. The objective is to perform a sensitivity analysis of a realistic numerical model of pVNS and to investigate the effects of the model parameters on the excitation threshold for single and bundled axons. Methods: Sim4Life electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. Investigated parameters include the axon diameter and number, model temperature, ear conductivity, and electrodes’ penetration depth and position. Results: The electric field distribution was evaluated. Model temperature and ear conductivity are the non-influential parameters. Axons fiber diameter and the electrodes’ penetration depth are the most influential parameters with a maximum threshold voltage sensitivity of 32 mV for each 1 μm change in the axon diameter and 38 mV for each 0.1 mm change in the electrodes’ penetration depth. Conclusions: The established sensitivity analysis allows the identification of the influential and the non-influential parameters with a sensitivity quantification. Results suggest that the electrodes’ penetration depth is the most influential parameter.

Highlights

  • The vagus nerve is an important constituent of the autonomic nervous system and plays a major role in the regulation of metabolic homeostasis

  • Electric field distribution shows that highest electric field values appear near the needle with a fast decline over distance, which is due to the point effect on the needle

  • By increasing the number of axons, we increase the size of the axon population region and we expand the location of the axon population

Read more

Summary

Introduction

The vagus nerve is an important constituent of the autonomic nervous system and plays a major role in the regulation of metabolic homeostasis. Less-invasive ways of stimulation were developed to minimize the stimulation risks by using electrodes in targeted regions of the auricle and access afferent Aβ fibers of the auricular branch of the vagus nerve. Less-invasive percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) gained importance as a possible nonpharmacological treatment for various diseases. The objective is to perform a sensitivity analysis of a realistic numerical model of pVNS and to investigate the effects of the model parameters on the excitation threshold for single and bundled axons. Investigated parameters include the axon diameter and number, model temperature, ear conductivity, and electrodes’ penetration depth and position. Model temperature and ear conductivity are the non-influential parameters. Axons fiber diameter and the electrodes’ penetration depth are the most influential parameters with a maximum threshold voltage sensitivity of 32 mV for each 1 μm change in the axon diameter and 38 mV for each 0.1 mm change in the electrodes’

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.