Abstract

Real physical systems subjected to dynamic environments all display nonlinear behavior, yet they are most frequently modeled in a linear framework. The main reasons are, first, that it is convenient and efficient to solve linear equations, and second, that the system behavior can often be accurately approximated using linear governing equations. Experience shows that much of the nonlinearity of system behavior arises from the dynamic action of mechanical joints in systems. When the linear framework is used, the stiffness of joints is modeled as linear, and the damping is modeled as linear and viscous. To model mechanical joints otherwise requires a nonlinear framework and mathematical finite element model that accommodates transient time domain analysis. This study investigates a particular mechanical joint energy dissipation model: the Iwan model for energy dissipation caused by microslip friction. The sensitivity of energy dissipation in a system due to variation of model parameters is studied. The results of a combined numerical/experimental example that uses a model calibrated to a sequence of experiments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call