Abstract

We created a look-up table (LUT) based on the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer model, which reduces large errors in the surface reflectance retrieval under high solar zenith angle (SZA) conditions. The LUT was calculated in 10° SZA intervals containing pre-computed atmospheric correction coefficients as a function of discretized pre-defined input parameters. In order to validate the performance of the LUT, we compared the retrieved surface reflectance using the LUT against a retrieval performed using the simplified method of atmospheric correction (SMAC). These results were validated against MODIS reflectance data (MOD09). The surface reflectance obtained using the LUT was highly correlated with the MOD09, with a coefficient of determination (R2) of 0.88 (red band) and 0.94 (NIR). The retrieved surface reflectance had a root mean-squared error of 0.0132 (red band) and 0.0191 (NIR). Accuracy of surface reflectance retrieved using our LUT with a 10° SZA interval was better than that of the obtained using SMAC. However, certain errors were still present particularly at high SZAs. In order to increase the accuracy at high SZAs, new LUT was computed with a finer SZA interval (5°) at high SZAs. In both red and NIR bands, the R2, fine SZA interval LUT (0.92) were compared to the coarse SZA interval LUT (0.74) of around 65°. Additionally, the run time for surface reflectance retrievals with our LUT was almost comparable to that of the SMAC, an operational model. This study demonstrates that proper SZAs interval for making LUT in high SZA range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call