Abstract

We address in this paper the efficient estimation of sensitivity coefficients by Monte Carlo simulations. In the context of geological performance for the risk assessment of radioactive waste repositories, a recent non-analog Monte Carlo simulation [1] based on an integral equation for the transport of radionuclides in porous media is examined in the view of sensitivity analysis. Two methods are compared: Differential Monte Carlo which requires special care when the integral kernel of the integral equation vanishes; and Double Randomization technique which is used to evaluate an effective sensitivity coefficient. Numerical results illustrate the methods for radionuclide migration and focus on the fraction reaching the upper surface of the medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.