Abstract
Interval is an alternative to probability distribution in quantifying uncertainty for sensitivity analysis (SA) when there is a lack of data to fit a distribution with good confidence. It only requires the information of lower and upper bounds. Analytical relations among design parameters, design variables, and target performances under uncertainty can be modeled as interval-valued constraints. By incorporating logic quantifiers, quantified constraint satisfaction problems (QCSPs) can integrate semantics and engineering intent in mathematical relations for engineering design. In this paper, a global sensitivity analysis (GSA) method is developed for feasible design space searching problems that are formulated as QCSPs, where the effects of value variations and quantifier changes for design parameters on target performances are analyzed based on several proposed metrics, including the indeterminacy of target performances, information gain of parameter variations, and infeasibility of constraints. Three examples are used to demonstrate the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.