Abstract

This paper provides sufficient conditions for the optimal value function of a given linear semi-infinite programming (LSIP) problem to depend linearly on the size of the perturbations, when these perturbations involve either the cost coefficients or the right-hand side function or both, and they are sufficiently small. Two kinds of partitions are considered. The first concerns the effective domain of the optimal value as a function of the cost coefficients and consists of maximal regions on which this value function is linear. The second class of partitions considered in this paper concerns the index set of the constraints through a suitable extension of the concept of optimal partition from ordinary to LSIP. These partitions provide convex sets, in particular, segments, on which the optimal value is a linear function of the size of the perturbations, for the three types of perturbations considered in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.