Abstract

This paper describes the testing method for five-axis machining centers using three-dimensional circular interpolation movement equivalent to the cone-frustum cutting. It is assumed in the simulation that a ball bar system is used as a measuring device that can freely moves in 3D space. The ratio of a measurement value by the ball bar and a real error of each axis is defined as a sensitivity coefficient of axis. The sensitivity coefficient of each axis was calculated changing the apex angle and the center location of virtual cone-frustum. The 3D circular movements are simulated, and the effect of the pitch errors of the axes of rotation was investigated by changing the sensitive direction of the ball bar. From the view point of sensitivity coefficient, it is pointed out that if the measurement is conducted by the ball bar which is parallel to the bottom of a cone-frustum whose center is set away from the center line of the axis of rotation, it is possible to measure the movement errors of five axes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.