Abstract
The surplus process of an insurance portfolio is defined as the wealth obtained by the premium payments minus the reimbursements made at the time of claims. When this process becomes negative (if ever), we say that ruin has occurred. The general setting is the Gambler's Ruin Problem. In this paper we address the problem of estimating derivatives (sensitivities) of ruin probabilities with respect to the rate of accidents. Estimating probabilities of rare events is a challenging problem, since naïve estimation is not applicable. Solution approaches are very recent, mostly through the use of importance sampling techniques. Sensitivity estimation is an even harder problem for these situations. We shall study three methods for estimating ruin probabilities: one via importance sampling (IS), and two others via indirect simulation: the storage process (SP), which restates the problems in terms of a queuing system, and the convolution formula (CF). To estimate the sensitivities, we apply the Rare Perturbation Analysis (RPA) method to IS, the Infinitesimal Perturbation Analysis (IPA) method to SP and the score function method to CF. Simulation methods are compared in terms of their efficiency, a criterion that appropriately weighs precision and CPU time. As well, we indicate how other criteria such as set-up time and prior formulae development may actually be problem-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.