Abstract

CO2-EOR is considered as a promising solution for enhanced oil recovery (EOR) and is attracting attention as being a more economical CO2 geological sequestration solution along with oil recovery enhancement. However, injecting CO2 at high pressure may cause many geomechanical changes and potential instabilities in surrounding formation such as ground uplift, caprock fracturing, and nearby fault reactivation. Such instabilities could significantly influence the stability of both surface facilities and subsurface structures. Especially, miscible CO2-EOR, by which recovers more oil than immiscible one but, uses less CO2, requires an injection pressure exceeding the minimum miscible pressure (MMP), which is determined by characteristics of reservoir conditions and oil compositions. Thus, for successful and safe CO2-EOR operation, injection pressure interval between MMP and the maximum pressure that could be tolerated from geomechanics safety concerns should be appropriately designed considering site-specific reservoir conditions. In this study, we perform a numerical simulation of coupled multiphase fluid flow and geomechanical analysis using TOUGH-FLAC simulator for the potential CO2-EOR site in Indonesian oil field, and demonstrate how much fault reactivation is sensitive to fault structure, slip-weakening property of faults, reservoir permeability, and in situ stress conditions. The model site consists of impermeable shale and permeable sandstone reservoir units so that the potential for fault slip through this multilayered formation is highlighted in the simulations. Our simulation results showed that fault slip initiation can be reached earlier period when in situ stress is anisotropic and reservoir is more permeable, because the stress state at the faults is near the frictional strength limit and the pore pressure buildup reaches to the fault much faster. The analysis shows that multilayered formations with high- and low-permeability layers are advantageous in CO2-EOR since intense pore pressure buildup and subsequent fault reactivation could be impeded by pressure dissipation in high-permeability layers. However, we noted that fault reactivation may become substantial when the fault has a slip-weakening property and the residual frictional coefficient of the site-specific fault is very low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.