Abstract

A main goal of epidemiology is to provide an impact of an exposure on health outcomes. The attributable fraction (AF) is a widely used measure for quantifying its contribution. Various methods have been developed to estimate AF, including standardization, inverse probability of treatment weighting, and doubly robust methods. However, the validity of these methods is established based on the conditional exchangeability assumption, which cannot be tested using only observed data. To assess how vulnerable the research findings are to departures from this assumption, researchers need to conduct a sensitivity analysis. In this study, we propose novel sensitivity analysis methods for AF. Sensitivity analysis problems are formulated as optimization problems, and analytic solutions for the problem are derived. We illustrate our proposed sensitivity analysis methods with a publicly available dataset and examine how the AF of the mother's smoking status during pregnancy for low birth weight changes to the degree of unmeasured confounding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.