Abstract

Acoustic noise and vibration sources in electric machines are mainly of electromagnetic and structural origin. A lumped structural unit response-based sensitivity analysis procedure is proposed in this article, which isolates electromagnetic and structural impacts brought by variation of different design parameters in a fractional slot concentrated winding, surface mounted permanent magnet synchronous machine (SPMSM). The impact of ten design parameters on average torque, torque ripple, synchronous inductance, dominant spatial-temporal order airgap force, cogging torque, friction torque, dominant mode frequency and structural unit response is studied in detail for a 12 slot/10 pole (12s10p) SPMSM. Analysis reveals that on a 12s10p SPMSM, slot opening has a very high impact on dominant airgap force component. A multilevel nonlinear regression model-based fast optimization strategy is introduced considering electromagnetic and structural design objectives and constraints following the sensitivity analysis. The optimized design is prototyped to validate the proposed design approach. Impact hammer-based modal analysis, no load, load and run-up tests are performed on the prototype for experimental validation. Ranging from structural tests to electromagnetic tests, the experimental results closely follow and validate the simulation-based predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.