Abstract

The structural response of a single-layer reticulated dome to external explosions is shaped by many variables, and the associated uncertainties imply non-deterministic results. Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties. Therefore, the impact of the uncertainties associated with these input variables on the structures’ response needs to be studied and quantified. In this study, a parametric uncertainty analysis was conducted first. Then, local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response. A probabilistic structural response model was established based on sensitive variables and a reasonable sample size. Furthermore, some deterministic empirical methods for explosion-resistance design, including the plane blast load model of CONWEP, the curved blast load model under the 50% assurance level, and the 20% mass-increased method, were used for evaluating their reliability. The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed. Evidently, the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability, but CONWEP did not; thus, the 1.2MB0.5 method can be used for making high-confidence simple predictions. In addition, the results indicated that the structural response is very sensitive to the explosion parameters. Based on these results, it is suggested that for explosion proofing, setting up a defensive barrier is more effective than structural strengthening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.