Abstract

Fiber-reinforced polymer (FRP) composites are increasingly used in concrete structures owing to their superior corrosion resistance. However, FRP-reinforced concrete (RC) structures exhibit less ductile response compared to steel RC structures. Recently, the use of basalt fiber reinforced concrete (BFRC) reinforced with BFRP bars was investigated to achieve a reasonable level of ductility in BFRC-BFRP one-way slabs. The shear behavior of such a slab depends on different design parameters. This paper aims to identify the impact of each design parameter on the shear behavior of BFRC-BFRP one-way slabs using a fractional factorial design of experiment (DOE). A 3D finite element model was first developed and validated against available experimental results. The developed model is then used to conduct a sensitivity analysis considering five significant factors that influence the shear behavior of BFRC-BFRP one-way slabs. These factors are the longitudinal reinforcement ratio, shear span-to-depth ratio, effective depth, concrete compressive strength, and volume fraction of BMF. Finally, a design equation that can predict the shear capacity of one-way BFRC-BFRP slabs was proposed based on genetic algorithm. The proposed model showed the best prediction accuracy compared to the available design codes and guidelines with a mean Vpred/Vexp of 0.97 and a COV of 17.91%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.