Abstract

FLORIDyn is a parametric control-oriented dynamic model suitable to predict the dynamic wake interactions between wind turbines in a wind farm. In order to improve the accuracy of FLORIDyn, this study proposes to calibrate the tuning parameters present in the model by employing a probabilistic setting using the UQ4WIND framework. The strategy relies on constructing a surrogate model (based on polynomial chaos expansion), which is then used to perform both global sensitivity analysis and Bayesian calibration. For our analysis, a nine wind turbine configuration in a yawed setting constitutes the test case. The results of sensitivity analysis offer valuable insight into the time-dependent influence of the model parameters onto the model output. The model parameter tied to the turbine efficiency appear to be the most sensitive parameter affecting the model output. The calibrated FLORIDyn model using the Bayesian approach yield predictions much closer to the measurement data, which is equipped with an uncertainty estimate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.