Abstract
To determine the sensitivity profiles of probabilistic and deterministic DTI tractography methods in estimating geometric properties in arm muscle anatomy. Spin-echo diffusion-weighted MR images were acquired in the dominant arm of 10 participants. Both deterministic and probabilistic tractography were performed in two different muscle architectures of the parallel-structured biceps brachii (and the pennate-structured flexor carpi ulnaris. Muscle fascicle geometry estimates and number of fascicles were evaluated with respect to tractography turning angle, polynomial fitting order, and SNR. The DTI tractography estimated fascicle lengths were compared with measurements obtained from conventional cadaveric dissection and ultrasound modalities. The probabilistic method generally estimated fascicle lengths closer to ranges reported by conventional methods than the deterministic method, most evident in the biceps brachii (p > 0.05), consisting of longer, arc-like fascicles. For both methods, a wide turning angle (50º-90°) generated fascicle lengths that were in close agreement with conventional methods, most evident in the flexor carpi ulnaris (p > 0.05), consisting of shorter, feather-like fascicles. The probabilistic approach produced at least two times more fascicles than the deterministic approach. For both approaches, second-order fitting yielded about double the complete tracts as third-order fitting. In both muscles, as SNR decreased, deterministic tractography produced less fascicles but consistent geometry (p > 0.05), whereas probabilistic tractography produced a consistent number but altered geometry of fascicles (p < 0.001). Findings from this study provide best practice recommendations for implementing DTI tractography in skeletal muscle and will inform future in vivo studies of healthy and pathological muscle structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.