Abstract

AbstractAn optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.