Abstract
The materials used in detection of high energy photons are of primary importance in the construction of efficient, cost effective and sensitive detectors. Current research into Perovskites for solar cell technology has stimulated interest in their potential alternative uses, one of which is in direct photon conversion radiation detectors, owed primarily to their high-Z elemental composition twinned with exceptional charge carrier transport properties. Here, the Perovskite CsPbBr 3 has been synthesised through solution growth. The raw CsPbBr 3 was a granular powder which was formed into disks of 8 mm diameter and 1-2 mm thickness by two methods: 1). the powders were pressed into pellets using a hydraulic press or 2). sealed in a quartz ampoule under vacuum and then melted and quenched to form a polycrystalline solid which was cut to size. Metallic contacts were deposited on the front and back faces to permit charge collection. The results from the pressed devices are promising, particularly given that the production method is cost effective, repeatable and scalable. The solid-from-melt devices show similar performance but further development is required to optimise the production method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.