Abstract

In this work, a TiO2 nanoparticle modified carbon ionic liquid electrode (CILE) was employed as a sensitive sensor for the investigation of the electrochemical behavior of indomethacin (IND). This nanocomposite sensor has been fabricated by incorporation of TiO2 nanoparticles and the ionic liquid 1-hexylpyridinium hexafluorophosphate (HPFP). The surface of the electrode was studied by scanning electron microscopy (SEM). Differential pulse voltammetry (DPV) was used for quantification of sub-micromolar amounts of IND. Electrochemical parameters of the electrode reaction of IND, including the electron transfer coefficient (α) and the electron-transfer number (n), were calculated by cyclic voltammetry (CV) methods. Under selected conditions, the anodic peak current was linear for the concentration of IND in the broad range of 1.0 × 10-7 to 1.0 × 10-4 M with the detection limit of 2.1× 10-8 M. Moreover, the analytical performance of the proposed method for the determination of IND content in plasma samples was evaluated with good sensitivity and acceptable recoveries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call