Abstract

Lipoarabinomannan (LAM) is a prospective noninvasive biomarker for tuberculosis (TB) diagnosis. Here, we report a visual immunoassay of high sensitivity for detecting LAM in urine samples toward TB diagnosis. This method uses a DNA-linked immunosorbent of LAM, followed by a transduction cascade into amplified visual signals using quantum dots (QDs) and calcein reaction with Cu2+ and copper nanoparticles (Cu NPs). The limit of detection (LOD) for LAM in the urine reaches 2.5 fg/mL and 25 fg/mL using a fluorometer and length readouts on strips, respectively, demonstrating an ultrahigh sensitivity. The clinical validation of the proposed assay was performed with 147 HIV-negative clinical urine specimens. The results show the sensitivity of test is 94.1% (16/17) for confirmed TB (culture-positive) and 85% (51/60) for unconfirmed TB (clinical diagnosis without positive culture results), respectively, when the test cutoff value is 40 fg/mL for TB. Its specificity is 89.2% (25/28) in non-TB and nontuberculous mycobacterial patients. The area under the curve (AUC) was 0.86 when controls were non-TB and LTBI patients, while the AUC was 0.92 when controls were only non-TB patients. This highly sensitive visual immunoassay of LAM has shown potential for noninvasive diagnosis of TB using urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call