Abstract

Next-generation biosensing tools based on CRISPR/Cas have revolutionized the molecular detection. A number of CRISPR/Cas-based biosensors have been reported for the detection of nucleic acid targets. The establishment of efficient methods for non-nucleic acid target detection would further broaden the scope of this technique, but up to now, the concerning research is limited. In the current study, we reported a versatile biosensing platform for non-nucleic acid small-molecule detection called SMART-Cas12a (small-molecule aptamer regulated test using CRISPR/Cas12a). Simply, hybridization chain reaction cascade signal amplification was first trigged by functional nucleic acid (aptamer) through target binding. Then, the CRISPR/Cas system was integrated to recognize the amplified products followed by activation of the trans-cleavage. As such, the target can be ingeniously converted to nucleic acid signals and then fluorescent signals that can be readily visualized and analyzed by a customized 3D-printed visualizer with the help of a home-made App-enabled smartphone. Adenosine triphosphate was selected as a model target, and under the optimized conditions, we achieved fine analytical performance with a linear range from 0.1 to 750 μM and a detection limit of 1.0 nM. The satisfactory selectivity and recoveries that we have obtained further demonstrated this method to be suitable for a complex sample environment. The sample-to-answer time was less than 100 min. Our work not only expanded the reach of the CRISPR-Cas system in biosensing but also provided a prototype method that can be generalized for detecting a wider range of analytes with desirable adaptability, sensitivity, specificity, and on-site capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.