Abstract
Given the great utility that having fast, efficient and cost-effective methods for the detection of SARS-CoV-2 in wastewater can have in controlling the pandemic caused by this virus, the development of new dependable and specific SARS-CoV-2 coronavirus sensing devices to be applied to wastewater is essential to promote public health interventions. Therefore, herein we propose a new method to detect SARS-CoV-2 in wastewater based on a carbon nanodots-amplified electrochemiluminescence immunosensor for the determination of the SARS-CoV-2 Spike S1 protein. For the construction of the immunosensor, N-rich carbon nanodots have been synthetized with a double function: to contribute as amplifiers of the electrochemiluminescent signal in presence of [Ru(bpy)3]2+ and as antibody supports by providing functional groups capable of covalently interacting with the SARS-CoV-2 Spike S1 antibody. The proposed ECL immunosensor has demonstrated a high specificity in presence of other virus-related proteins and responded linearly to SARS-CoV-2 Spike S1 concentration over a wide range with a limit of detection of 1.2 pg/mL. The immunosensor has an excellent stability and achieved the detection of SARS-CoV-2 Spike S1 in river and urban wastewater, which supplies a feasible and reliable sensing platform for early virus detection and therefore to protect the population. The detection of SARS-CoV-2 Spike S1 in urban wastewater can be used as a tool to measure the circulation of the virus in the population and to detect a possible resurgence of COVID-19.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.