Abstract

Sky polarization patterns are a relatively new and interesting field of polarized remote sensing. However, most current research mainly focuses on Rayleigh scattering or different conditions of aerosol optical depth. In this study, the sky downward polarization patterns are calculated for both degree of linear polarization and angle of polarization with scattering and absorbing aerosol situations. When coarse-mode aerosol changes from scattering to absorbing, the decreasing trend in the sky downward degree-of-linear-polarization largely slows down when aerosol optical depth increases. For fine-mode aerosol, on the other hand, the change of pattern is not sensitive to the absorbing property of aerosol. Sky downward angle-of-polarization patterns for different levels of aerosol optical depth and aerosol modes are similar, with little change. The results suggest that in order to accurately use sky polarization for remote sensing or bionic navigation, it is necessary to characterize aerosol microphysical properties first, especially when coarse absorbing aerosol exists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call