Abstract

Recent research on adversarial attacks has highlighted the vulnerability of deep neural networks (DNNs) to perturbations. While existing studies generate adversarial perturbations spread across the entire image, these global perturbations may be visible to human eyes, reducing their effectiveness in real-world scenarios. To alleviate this issue, recent works propose to modify a limited number of input pixels to implement adversarial attacks. However, these approaches still have limitations in terms of both imperceptibility and efficiency.This paper proposes a novel plug-in framework called Sensitive Region-Aware Attack (SRA) to generate soft-label black-box adversarial examples using the sensitivity map and evolution strategies. First, a transferable black-box sensitivity map generation approach is proposed for identifying the sensitive regions of input images. To perform SRA with a limited amount of perturbed pixels, a dynamic l0 and l∞ adjustment strategy is introduced. Furthermore, an adaptive evolution strategy is employed to optimize the selection of generated sensitive regions, allowing for the execution of effective and imperceptible attacks. Experimental results demonstrate that our SRA achieves an imperceptible soft-label black-box attack with a 96.43% success rate using less than 20% of the image pixels on ImageNet and a 100% success rate using 30% of the image pixels on CIFAR-10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.