Abstract

An optical trap is used to monitor bio-deleterious effects induced by ultra-violet (UV) radiation in a single, live cell. When placed in a laser optical trap, Chlamydomonas reinhardtii cells undergo rotation because of the interplay of flagellar-based forces and optical forces generated by the laser light. Such rotation is sustained by the trapped cell's flagellar action, thereby unveiling a robust and quantitative cellular assay for flagellar function. UV induces flagellar damage, leading to dose-dependent attenuation of cellular rotation. At UV doses larger than ∼9Jm−2 rotational motion ceases. The ability of the cell to rotate in an optical trap is, therefore, a measure of the damage response of the cell. By monitoring cell rotation, we can quantify UV damage with high sensitivity, at threshold doses as low as 2Jm−2. Apart from the capability of UV-damage detection, our rotation assay is also sensitive to the cellular protective responses against such damage. To illustrate this additional facet, we quantify the efficacy of ascorbic acid in combating the UV-damage response of individual cells. Upon addition of this antioxidant, there is no cessation of rotations for doses as high as 25Jm−2. This represents the first single-cell sensor that robustly quantifies a complex pleiotropic cellular response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.