Abstract

A novel strategy was developed for fluorescent detection of Pb(2+) in aqueous solution based on the fact that graphene oxide (GO) could quench the fluorescence of amino pyrene (AP)-grafted gold nanoparticles (AP-AuNPs) and Pb(2+) could accelerate the leaching rate of AuNPs in the presence of S2O3(2-). In this system, fluorescence reporter AP was grafted on AuNPs through the Au-N bond. In the presence of GO, the system shows fluorescence quenching because of π-π stacking between AP and GO. With the addition of Pb(2+) and S2O3(2-), the system displays fluorescence recovery, which is attributed to the fact that Pb(2+) could accelerate the leaching of the AuNPs from GO surfaces and release of AP into aqueous solution. Interestingly, the concentration of GO could control the fluorescence "turn-off" or "turn-on" for Pb(2+) detection. In addition, GO is also an excellent promoter for the acceleration of the leaching of AuNPs and shortening the analytical time to ∼15 min. Under the optimal conditions, the fluorescence Pb(2+) sensor shows a linear range from 2.0 × 10(-9) to 2.3 × 10(-7) mol/L, with a detection limit of 1.0 × 10(-10) mol/L.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.