Abstract

Sepsis is one of the leading causes of death worldwide. The disease progression of sepsis is very fast, and there is a 7-9% increase in mortality every hour. Therefore, rapid and sensitive detection of pathogenic bacteria is crucial for the timely treatment of sepsis as well as the reduction of mortality. Herein, we present a sensitive near-infrared (NIR) fluorescence identification and a rapid magnetic capture based on bioorthogonal nanoprobes for the detection of multiple bacteria in whole blood. The nanoprobes with NIR fluorescence/magnetic properties were modified with dibenzocyclooctyne groups and used to capture and recognize the bacteria via bioorthogonal reaction. The magnetic nanoprobes showed superparamagnetic properties with a saturation magnetization as high as 63 emu/g. Through clicking with the azide groups inserted on the bacteria walls by metabolic engineering, the bioorthogonal magnetic nanoprobes allow fast and broad-spectrum capture of both Gram-positive and Gram-negative bacteria. The bioorthogonal NIR fluorescent nanoprobes with a maximum emission at 900 nm can effectively avoid background interference, further enabling sensitive identification of the bacteria in whole blood. The detection limit was as low as 4 CFU/mL in less than 2.5 h and the nanoprobes were successfully applied to the detection of bacteria in blood samples from the patients with sepsis, showing the potential application in early sepsis diagnosis and clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call