Abstract

As a major approach to looking for life beyond the Earth, the search for extraterrestrial intelligence (SETI) is committed to detecting technosignatures such as engineered radio signals that are indicative of technologically capable life. In this paper, we report a targeted SETI campaign employing an observation strategy named multi-beam coincidence matching (MBCM) at the Five-hundred-meter Aperture Spherical radio Telescope (FAST) towards 33 known exoplanet systems, searching for ETI narrow-band drifting signals across 1.05-1.45 GHz in two orthogonal linear polarization directions separately. A signal at 1140.604 MHz detected from the observation towards Kepler-438 originally peaked our interest because its features are roughly consistent with assumed ETI technosignatures. However, evidences such as its polarization characteristics are almost able to eliminate the possibility of an extraterrestrial origin. Our observations achieve an unprecedented sensitivity since the minimum equivalent isotropic radiated power (EIRP) we are able to detect reaches 1.48 x10^9 W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call