Abstract

Rapid and sensitive antigen detection using a lateral flow immunoassay (LFIA) is crucial for diagnosing infectious diseases due to its simplicity, speed, and user-friendly features. However, it remains a critical issue to explore specific biorecognition elements and powerful signal amplification. In this study, taking SARS-CoV-2 as a proof of concept, a specific peptide, WFLNDSELIML, binding to the SARS-CoV-2 spike (S) antigen was identified by a nonamplified biopanning method, which exhibited high affinity to the target, with a dissociation constant of 9.29 ± 1.55 nM. Molecular docking analysis reveals that this peptide binds to the N-terminal domain of the SARS-CoV-2 S antigen. Then, using this peptide as a capture probe and angiotensin-converting enzyme 2 as a detection probe, a peptide-based lateral flow immunoassay (pLFIA) for the sensitive detection of the SARS-CoV-2 S antigen without any antibody was developed, for which a polydopamine nanosphere (PDA)@MnO2 nanocomposite with excellent oxidase-like activity was used as a colorimetric label, exhibiting dual-mode remarkable signal amplification of natural melanin and on-demand nanozyme catalytic enhancement. The PDA@MnO2-based pLFIA is capable of detecting the SARS-CoV-2 S antigen with a limit of detection of 8.01 pg/mL, which is 18.7 times lower than that of a conventional pLFIA tagged with gold nanoparticles. Additionally, the as-proposed PDA@MnO2-based pLFIA can detect up to 150 transduction units/mL SARS-CoV-2 pseudoviruses spiked in saliva samples. Given the outstanding analytical performance, the proposed PDA@MnO2-based pLFIA may offer a reliable option for the rapid diagnosis of SARS-CoV-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.