Abstract
The antihyerlipidemic drug atorvastatin (ATR) is used worldwide as part of the strategy to prevent cardiovascular events. The high prevalence of patient nonadherence remains an important challenge which could be addressed efficiently by precision pharmacotherapy based on therapeutic drug monitoring (TDM). ATR is metabolized to pharmacologically active metabolites, and evidence shows that the sums of ATR acid and lactone form concentrations (ATR + ATRL), or of ATR and hydroxylated metabolites (ATR + MET) should be assayed. A method is presented for the analysis of these substances in serum. Method validation included the estimation of the quantitative relationship between the concentrations and the standard deviations (SD), which supports the optimal incorporation of TDM results into nonparametric pharmacokinetic models. The concentrations of the analytes were evaluated in human subjects receiving ATR. The method’s performance improved by taking the sums of acid and lactone concentrations into account. The concentration–SD relationship was linear, and we recommend applying Theil’s regression for estimating the assay error. All analytes could be detected by 2 h post dose in the samples of human subjects. The changes in metabolite/parent drug concentration ratios in time depended on the dose. The method is suitable for the TDM of ATR with a focus on precision pharmacotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.