Abstract

Being awfully harmful to the environment and human health, the qualitative and quantitative determinations of polycyclic aromatic amines (PAAs) are of great significance. In this paper, a novel core–shell heterostructure of multiwalled carbon nanotubes (MWCNTs) as the core and graphene oxide nanoribbons (GONRs) as the shell (MWCNTs@GONRs) was produced from longitudinal partially unzipping of MWCNTs side walls using a simple wet chemical strategy and applied for electrochemical determination of three kinds of PAAs (1-aminopyrene (1-AP), 1-aminonaphthalene and 3,3′-diaminobiphenyl). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis and electrochemical methods were used to characterize the as-prepared MWCNTs@GONRs. Due to the synergistic effects from MWCNTs and GONRs, the oxidation currents of PAAs at the MWCNTs@GONRs modified glassy carbon (GC) electrode are much higher than that at the MWCNTs/GC, graphene/GC and bare GC electrodes. 1-AP was used as the representative analyte to demonstrate the sensing performance of the MWCNTs@GONRs/GC electrode, and the proposed modified electrode has a linear response range of 8.0–500.0nM with a detection limit of 1.5nM towards 1-AP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call