Abstract

In this article, a carbon ionic liquid electrode (CILE) was fabricated by using ionic liquid N-hexylpyridinium hexafluorophosphate as the binder and the modifier. Then urchinlike MnO2 microsphere and chitosan (CTS) was further casted on the CILE surface step-by-step to get a modified electrode that was denoted as CTS/MnO2/CILE. Cyclic voltammetric studies indicated that bisphenol A (BPA) exhibited a well-defined oxidation peak at 0.486 V in 22.83 g L−1 pH 8.0 Britton‒Robinson buffer solution, which was attributed to the electro-oxidation of BPA on the modified electrode. The presence of urchinlike MnO2 microsphere on the electrode surface could increase the oxidation peak current (Ipa) greatly, which may be due to the larger surface area that could adsorb more BPA on the electrode surface. Electrochemical parameters of BPA on the modified electrode were calculated with the electron transfer coefficient (α) as 0.66 and the apparent heterogeneous electron transfer rate constant (ks) as 0.50 s−1. Under the optimal conditions, a linear relationship between the Ipa of BPA and its concentration was obtained in the range from 1.37 × 10–1 mg L−1 to 182.6 mg L−1 with the detection limit as 7.31 × 10–3 mg L−1 (3σ). The CTS/MnO2/CILE was applied to the detection of BPA content in different kinds of samples with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.