Abstract

Nanozymes have been widely used in biosensors instead of natural enzymes because of low cost, high stability and ease of storage. However, few works use oxidase-like nanozymes to fabricate electrochemical biosensors. Herein, we proposed a sensitive electrochemical biosensor to detect uracil-DNA glycosylase (UDG) based on the hollow Mn/Ni layered doubled hydroxides (h-Mn/Ni LDHs) as oxidase-like nanozyme. Briefly, the h-Mn/Ni LDHs, which was prepared by a facile hydrothermal method, exhibited excellent oxidase-like activity because the hollow structure provided rich active sites and high specific surface area. Then, the signal probes were constructed by assembling the hairpin DNA (hDNA), single DNA1 and DNA2 on the h-Mn/Ni LDHs, respectively. In the presence of UDG, the uracil bases in the stem of hDNA were specifically excised, generating apyrimidinic (AP) sites and inducing the unwinding of the hDNA. Afterwards, the h-Mn/Ni LDHs@Au-hDNA/DNA1 was connected on the electrode via hybridization between unwinded hDNA and capture DNA (cDNA). Subsequently, the self-linking process allowed the retention of numerous h-Mn/Ni LDHs through simple DNA hybridization to amplify the signal of o-phenylenediamine (o-PD). Unlike many peroxidase-like nanozyme-based electrochemical biosensors, there is no need to add H2O2 during the experimental process, which effectively reduced the background signal as well as improved the stability of the biosensor. As expected, the biosensor exhibited excellent performance with a wide linear range and a low detection limit. This work highlights an appealing opportunity to develop a no H2O2 platform based on h-Mn/Ni LDHs for future application in biological analysis and clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.