Abstract

AbstractAn electrochemical biosensor for the bisphenol A determination was constructed onto a glassy carbon electrode modified with a hybrid nanostructure based on polypyrrole‐3‐carboxylic acid/Sb2O5/reduced graphene oxide and laccase enzyme. The hybrid nanostructure was characterized by X‐ray photoelectron spectroscopy (XPS), HR‐TEM, SEM microscopy, and electrochemical techniques. The biosensor displayed excellent response for bisphenol A determinations by differential pulse voltammetry, showing a theoretical detection limit of 9.9 nmol L−1 in the linear range of 0.1–1.0 μmol L−1. The biosensor demonstrated excellent selectivity in the determinations of bisphenol A in tap water without significant interference from other species, such as 17β‐estradiol, Estriol, Progesterone, Catechol, Hydroquinone, Ascorbic acid, and Dopamine. The biosensor also has presented an excellent performance in bisphenol A determinations in water, with recovery tax ranging from 99.6 to 101 %. Therefore, it can be used satisfactorily to detect bisphenol A in real samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call