Abstract

Photothermal lens spectrometry is a powerful optical detection technique that can be used to investigate biomolecules. In this work, for the first time to our knowledge, photothermal lens spectrometry was used for determination of nanomolar concentrations of three distinct deoxyribonucleic acid (DNA) strands using methylene blue as a labeling dye. Methylene blue interacts with phosphate groups of the DNA in lower DNA concentrations. It was observed that phosphate-methylene blue interaction had no obvious effect on methylene blue absorption and fluorescence spectra, but the photothermal lens spectrometry signal of methylene blue increased with DNA concentration. For this purpose, to evaluate the performance of the presented method, herring sperm DNA, Escherichia coli bacteria DNA, and partial 16S rRNA genes were examined. Under optimum conditions, photothermal lens spectrometry intensity of methylene blue increased linearly with DNA concentration when herring sperm DNA, Escherichia coli DNA, and 16S rRNA gene concentrations increased in the ranges of 0.1-250, 1-700, and 1-800 nmol L-1, respectively. The corresponding detection limits were found to be 0.07, 0.71, and 0.56 nmol L-1, respectively, and relative standard deviations for 50 nmol L-1 of the tested samples were 2.59%, 4.95%, and 4.57%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call