Abstract

This report presents a practical analytical method of photoacoustic (PA) spectroscopy that is based on wavelet transform (WT) and the first-derivative PA spectrum. An experimental setup is specially designed to obtain the first-derivative spectrum, which aims to identify some unnoticeable absorption peaks in the normal PA spectrum. To enhance the detectability of overlapping spectral bands, the WT is used to decompose the PA spectrum signals into a series of localized contributions (details and approximation) on the basis of the frequency. For the decomposed contributions do not change the absorption peak position of PA spectrum, one can retrieve the weak absorption signals by the decomposed result of WT. Because of the use of derivative spectroscopy and WT, three unnoticeable absorption peaks that are hidden in the PA spectrum of carbon absorption are precisely retrieved, the wavelengths of which are 699.7, 752.7, and 775.5nm, respectively. This analytical method, which has the virtue of using a physical method and using a computer software method, can achieve great sensitivity and accuracy for PA spectral analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call