Abstract
The coronavirus (COVID-19) pandemic has put the entire world at risk and caused an economic downturn in most countries. This work provided theoretical insight into a novel fiber optic-based plasmonic biosensor that can be used for sensitive detection of SARS-CoV-2. The aim was always to achieve reliable, sensitive, and reproducible detection. The proposed configuration is based on Ag-Au alloy nanoparticle films covered with a layer of graphene which promotes the molecular adsorption and a thiol-tethered DNA layer as a ligand. Here, the combination of two recent approaches in a single configuration is very promising and can only lead to considerable improvement. We have theoretically analyzed the sensor performance in terms of sensitivity and resolution. To highlight the importance of the new configuration, a comparison was made with two other sensors. One is based on gold nanoparticles incorporated into a host medium; the other is composed of a bimetallic Ag-Au layer in the massive state. The numerical results obtained have been validated and show that the proposed configuration offers better sensitivity (7100 nm\\RIU) and good resolution (figure of merit; FOM = 38.88 {RIU}^{-1} and signal-to-noise ratio; SNR = 0.388). In addition, a parametric study was performed such as the graphene layers’ number and the size of the nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.